34 research outputs found

    TASK SPECIFIC EVALUATION METHODOLOGY FOR CLINICAL FULL FIELD DIGITAL MAMMOGRAPHY

    Get PDF
    Purpose: The purpose of this dissertation is to evaluate the image quality of clinical Full Field Digital Mammography (FFDM) systems. This is done by evaluating image acquisition performance of clinical FFDM in a comprehensive way that accounts for scatter, focal spot un-sharpness, detector blur and anti-scatter grid performance using an anthropomorphic phantom. Additionally we intend to provide a limited evaluation of the effects that image processing in clinical FFDM has in signal detectability. Methodology: We explored different strategies and a variety of mathematical model observers in order to evaluate the performance of clinical FFDM systems under different conditions. To evaluate image acquisition performance, we tested a system-model-based Hotelling observer (SMHO) model on a bench-top system using a uniform anthropomorphic phantom for an signal known exactly background known exactly (SKE/BKE) task. We then applied this concept on two clinical FFDM systems to compare their performance. In a limited study to evaluate the effects of image processing in the detectability of FFDM, we implemented the channelized Hotelling observer (CHO) model on clinically realistic images of an anatomical phantom for an SKE/BKE task. Results: Even though the two systems use different detection technologies, there was no significant difference between their image acquisition performances quantified by the Contrast-Detail (CD) curves. We applied the CHO model to investigate the image processing algorithms used in GE Senographe DS FFDM system. For the particular SKE/BKE task with rotationally symmetric signals, the image processing tends to contribute to a non-significant reduction of system detectability. Conclusion: We provided a complete description of FFDM system performance including the image acquisition chain and post-acquisition image processing. We demonstrated the simplicity and effectiveness of both the MFHO and CHO methods in a clinical setting

    The evolution of the cytoskeleton

    Get PDF
    The cytoskeleton is a system of intracellular filaments crucial for cell shape, division, and function in all three domains of life. The simple cytoskeletons of prokaryotes show surprising plasticity in composition, with none of the core filament-forming proteins conserved in all lineages. In contrast, eukaryotic cytoskeletal function has been hugely elaborated by the addition of accessory proteins and extensive gene duplication and specialization. Much of this complexity evolved before the last common ancestor of eukaryotes. The distribution of cytoskeletal filaments puts constraints on the likely prokaryotic line that made this leap of eukaryogenesis

    Comparative Analysis of Proteome-Wide Lysine Acetylation in Juvenile and Adult Schistosoma japonicum

    No full text
    Schistosomiasis is a devastating parasitic disease caused by tremotodes of the genus Schistosoma. Eggs produced by sexually mature schistosomes are the causative agents of for pathogenesis and transmission. Elucidating the molecular mechanism of schistosome development and sexual maturation would facilitate the prevention and control of schistosomiasis. Acetylation of lysine is a dynamic and reversible post-translational modification playing keys role in many biological processes including development in both eukaryotes and prokaryotes. To investigate the impacts of lysine acetylation on Schistosoma japonicum (S. japonicum) development and sexual maturation, we used immunoaffinity-based acetyllysine peptide enrichment combined with mass spectrometry (MS), to perform the first comparative analysis of proteome-wide lysine acetylation in both female and male, juvenile (18 days post infection, 18 dpi) and adult (28 dpi) schistosome samples. In total, we identified 874 unique acetylated sites in 494 acetylated proteins. The four samples shared 47 acetylated sites and 46 proteins. More acetylated sites and proteins shared by both females and males were identified in 28 dpi adults (189 and 143, respectively) than in 18 dpi schistosomula (76 and 59, respectively). More stage-unique acetylated sites and proteins were also identified in 28 dpi adults (494 and 210, respectively) than in 18 dpi schistosomula (73 and 44, respectively). Functional annotation showed that in different developmental stages and genders, a number of proteins involving in muscle movement, glycometabolism, lipid metabolism, energy metabolism, environmental stress resistance, antioxidation, etc., displayed distinct acetylation profiles, which was in accordance with the changes of their biological functions during schistosome development, suggesting that lysine acetylation modification exerted important regulatory roles in schistosome development. Taken together, our data provided the first comparative global survey of lysine acetylation in juvenile and adult S. japonicum, which would deepen our understanding of the molecular mechanism of schistosome development and sexual maturation, and provide clues for the development of new anti-schistosome strategies

    Magnetic Resonance Imaging Combined with Histological Techniques for Dynamic Assessment of Cytotoxic Edema after Cerebral Ischemia-Reperfusion Injury

    No full text
    Background: Reperfusion therapy after ischemic cerebral stroke may cause cerebral ischemia-reperfusion injury (CIRI), and cerebral edema is an important factor that may aggravate CIRI. Our study aimed to dynamically monitor the development of early cytotoxic edema after CIRI by magnetic resonance imaging (MRI) and to validate it using multiple histological imaging methods. Methods: Male Sprague Dawley rats were divided into sham and CIRI groups. T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI)-MRI scans were performed in the sham and CIRI groups after reperfusion. Relative apparent diffusion coefficient (rADC) values were calculated and the midline shift (MLS) was measured. A series of histological detection techniques were performed to observe changes in the cerebral cortex and striatum of CIRI rats. Correlation analysis of rADC values with aquaporin-4 (AQP4) and sodium-potassium-chloride cotransport protein 1 (Na+-K+-2Cl-- cotransporter 1; NKCC1) was performed. Results: rADC values began to increase and reached a relatively low value in the cerebral cortex and striatum at 24 h after reperfusion, and the MLS reached relatively high values at 24 h after reperfusion (all p < 0.05). Hematoxylin-eosin (HE) staining showed that the nerve cells in the cortex and striatum of the sham group were regular in morphology and neatly arranged, and in the CIRI-24 h group were irregular, disorganized, and loosely structured. Using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, the number of TUNEL+ cells in the ischemic cortex and striatum in CIRI-24 h group was shown to increase significantly compared with the sham group (p < 0.05). Transmission electron microscopy showed that the perivascular astrocytic foot processes were swollen in the cortex and striatum of the CIRI-24 h group. Pearson correlation analysis demonstrated that rADC values were negatively correlated with the number of anti-glial fibrillary acidic protein (GFAP)+AQP4+ and GFAP+NKCC1+ cells of the CIRI rats. Conclusions: MRI combined with histological techniques can dynamically assess cytotoxic edema after CIRI, in a manner that is clear and intuitive for scientific researchers and clinicians, and provides a scientific basis for the application of MRI techniques for monitoring the dynamic progress of CIRI
    corecore